There is a newer version of this record available.

Dataset Open Access

Binary black-hole surrogate waveform catalog

Scott E. Field; Chad R. Galley; Jan S. Hesthaven; Jason Kaye; Manuel Tiglio; Jonathan Blackman; Béla Szilágyi; Mark A. Scheel; Daniel A. Hemberger; Patricia Schmidt; Rory Smith; Christian D. Ott; Michael Boyle; Lawrence E. Kidder; Harald P. Pfeiffer; Vijay Varma


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3455886</identifier>
  <creators>
    <creator>
      <creatorName>Scott E. Field</creatorName>
    </creator>
    <creator>
      <creatorName>Chad R. Galley</creatorName>
    </creator>
    <creator>
      <creatorName>Jan S. Hesthaven</creatorName>
    </creator>
    <creator>
      <creatorName>Jason Kaye</creatorName>
    </creator>
    <creator>
      <creatorName>Manuel Tiglio</creatorName>
    </creator>
    <creator>
      <creatorName>Jonathan Blackman</creatorName>
    </creator>
    <creator>
      <creatorName>Béla Szilágyi</creatorName>
    </creator>
    <creator>
      <creatorName>Mark A. Scheel</creatorName>
    </creator>
    <creator>
      <creatorName>Daniel A. Hemberger</creatorName>
    </creator>
    <creator>
      <creatorName>Patricia Schmidt</creatorName>
    </creator>
    <creator>
      <creatorName>Rory Smith</creatorName>
    </creator>
    <creator>
      <creatorName>Christian D. Ott</creatorName>
    </creator>
    <creator>
      <creatorName>Michael Boyle</creatorName>
    </creator>
    <creator>
      <creatorName>Lawrence E. Kidder</creatorName>
    </creator>
    <creator>
      <creatorName>Harald P. Pfeiffer</creatorName>
    </creator>
    <creator>
      <creatorName>Vijay Varma</creatorName>
    </creator>
  </creators>
  <titles>
    <title>Binary black-hole surrogate waveform catalog</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <dates>
    <date dateType="Issued">2020-01-28</date>
  </dates>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3455886</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsSupplementTo">10.1103/PhysRevX.4.031006</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsSupplementTo">10.1103/PhysRevLett.115.121102</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsSupplementTo">10.1103/PhysRevD.95.104023</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsSupplementTo">10.1103/PhysRevD.96.024058</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="arXiv" relationType="IsSupplementTo">arXiv:1809.09125</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsSupplementTo">10.1103/PhysRevD.99.064045</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="arXiv" relationType="IsSupplementTo">arXiv:1905.09300</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1215752</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/sxs</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/zenodo</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This repository contains all publicly available numerical relativity surrogate data for waveforms
  produced by the
  &lt;a href="http://www.black-holes.org/SpEC.html"&gt;Spectral Einstein Code
  &lt;/a&gt;. The base method for building surrogate models can be found in
  &lt;a href="http://journals.aps.org/prx/references/10.1103/PhysRevX.4.031006"&gt;Field et al., PRX 4,
    031006 (2014)
  &lt;/a&gt;.
&lt;/p&gt;

&lt;p&gt;Several numerical relativity surrogate models are currently available in this catalog:
&lt;/p&gt;

&lt;ul&gt;
  &lt;li&gt;Current models
    &lt;ol&gt;
      &lt;li&gt;
	&lt;p&gt;NRSur7dq4.h5 &amp;mdash; This is a surrogate model for binary black hole mergers with
	  generic spins and mass ratios up to 4. A paper describing it can be found at
          &lt;a href="https://arxiv.org/abs/1905.09300"&gt;Varma et al., arxiv:1905.09300
          &lt;/a&gt;. It is evaluated with the gwsurrogate Python package, which can be found on
          &lt;a href="https://pypi.org/project/gwsurrogate"&gt;PyPI
          &lt;/a&gt;. Instructions for evaluating this surrogate can be found at
          &lt;a href="https://data.black-holes.org/surrogates/NRSur7dq4.html"&gt;this example
            IPython code
          &lt;/a&gt;.
        &lt;/p&gt;
      &lt;/li&gt;
      &lt;li&gt;
	&lt;p&gt;NRHybSur3dq8.h5 &amp;mdash; This is a surrogate model for binary black hole systems
	  with generic mass ratios but restricted to nonprecessing spins. Before constructing
	  the surrogate, the NR waveforms are hybridized with post-Newtonian waveforms to
	  include the early inspiral. Therefore this model covers the full stellar mass range
	  for ground-based detectors. A paper describing it can be found at
          &lt;a href="https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.064045"&gt;Varma
            et al., PRD 99, 064045 (2019)
          &lt;/a&gt;.&amp;nbsp; It is evaluated with the gwsurrogate Python package, which can be
          found on
          &lt;a href="https://pypi.python.org/pypi/gwsurrogate/"&gt;PyPI
          &lt;/a&gt;. Instructions for evaluating this surrogate can be found this
          &lt;a href="https://data.black-holes.org/surrogates/NRHybSur3dq8.html"&gt;example
            IPython code
          &lt;/a&gt;.
        &lt;/p&gt;
      &lt;/li&gt;
      &lt;li&gt;
	&lt;p&gt;NRSur7dq4Remnant &amp;mdash; This is a surrogate model for mass, spin, and recoil
	  kick velocity of the remnant BH left behind in generically precessing binary black
	  hole mergers, with mass ratios up to 4. A paper describing it can be found at
          &lt;a href="https://arxiv.org/abs/1905.09300"&gt;Varma et al., arxiv:1905.09300
          &lt;/a&gt;. It is evaluated with the surfinBH Python package, which can be found on
          &lt;a href="https://pypi.org/project/surfinBH/"&gt;PyPI
          &lt;/a&gt;. Installation instructions and an ipython help notebook can be found in the
          same link.
        &lt;/p&gt;
      &lt;/li&gt;
    &lt;/ol&gt;
  &lt;/li&gt;
  &lt;li&gt;Older models
    &lt;ol&gt;
      &lt;li&gt;
	&lt;p&gt;SpEC_q1_10_NoSpin_nu5thDegPoly_exclude_2_0.h5 &amp;mdash; A surrogate model for
	  binary black hole mergers with non-spinning black holes. This is describedin
          &lt;a href="http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.121102"&gt;Blackman
            et al., PRL115, 121102 (2015)
          &lt;/a&gt;. It is evaluated with the gwsurrogate python package, which can be found on
          &lt;a href="https://pypi.python.org/pypi/gwsurrogate/"&gt;PyPI
          &lt;/a&gt;. Instructions for evaluating this surrogate can be found in tutorials
          included with the gwsurrogate package and in this
          &lt;a href="https://data.black-holes.org/surrogates/GWSurrogate_example.html"&gt;example
            IPython code
          &lt;/a&gt;.
        &lt;/p&gt;
      &lt;/li&gt;
      &lt;li&gt;
	&lt;p&gt;NRSur4d2s_FDROM_grid12.h5 and NRSur4d2s_TDROM_grid12.h5 &amp;mdash; These are fast
	  frequency-domain and time-domain (respectively) surrogate models for binary black
	  hole mergers where the black holes may be spinning, but the spins are restricted to
	  a parameter subspace which includes some but not all precessing
	  configurations. NRSur4d2s_FDROM_grid12.h5 is the NRSur4d2s_FDROM model described in
          &lt;a href="https://dx.doi.org/10.1103/PhysRevD.95.104023"&gt;Blackman et al., PRD 95,
            104023, (2017)
          &lt;/a&gt;, and NRSur4d2s_TDROM_grid12.h5 is built from the underlying (slower)
          NRSur4d2s time-domain model in the same way but without the FFTs. These surrogates
          are also evaluated using gwsurrogate, and a tutorial can be found in this
          &lt;a href="https://data.black-holes.org/surrogates/NRSur4d2s_tutorial.html"&gt;example
            IPython code
          &lt;/a&gt;.
        &lt;/p&gt;
      &lt;/li&gt;
      &lt;li&gt;
	&lt;p&gt;NRSur7dq2.h5 &amp;mdash; This is a surrogate model for binary black hole mergers with
	  generic spins. A paper describing it can be foundat
          &lt;a href="https://dx.doi.org/10.1103/PhysRevD.96.024058"&gt;Blackman et al., PRD 96,
            024058 (2017)
          &lt;/a&gt;. This surrogate is evaluated through a standalone python package contained in
          NRSur7dq2.tar.gz, which has simple installation instructions in its README file. A
          tutorial can be found for evaluating this surrogate in this
          &lt;a href="https://data.black-holes.org/surrogates/NRSur7dq2_tutorial.html"&gt;example
            IPython code
          &lt;/a&gt;.
        &lt;/p&gt;
      &lt;/li&gt;
    &lt;/ol&gt;
  &lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;&amp;nbsp;
&lt;/p&gt;

&lt;p&gt;&amp;nbsp;
&lt;/p&gt;

&lt;p&gt;If you find these surrogate models useful in your own research please cite the Field et al., PRX
  (2014) paper as well as the relevant paper describing the specific numerical relativity surrogate
  model, if available (e.g., the Blackman et al. 2015 paper for non-spinning binary black hole
  coalescences).
&lt;/p&gt;

&lt;p&gt;Caveats:
&lt;/p&gt;

&lt;ol&gt;
  &lt;li&gt;
    &lt;p&gt;Evaluating surrogate models outside of the ranges they were trained upon may give
      inaccurate results. Please use with caution when extrapolating.
    &lt;/p&gt;
  &lt;/li&gt;
  &lt;li&gt;
    &lt;p&gt;The surrogate data available here for non-spinning binary black holes produced in
      Blackman et al. 2015 contains the (2,0) mode. However, this mode was not used in the
      paper. While this surrogate can predict a (2,0) mode, current numerical relativity
      simulations may not yet be able to accumulate (non-oscillatory) Christodoulou memory
      sufficiently. The surrogate (2,0) mode is founded upon basis SpEC waveforms that have been
      hybridized with leading order post-Newtonian waveforms. Therefore, the (2,0) mode can be
      included in the mode&amp;rsquo;s output but should be used with caution. Currently, the default
      option to evaluate this surrogate (using GWSurrogate) is to exclude all m=0 modes.
    &lt;/p&gt;
  &lt;/li&gt;
&lt;/ol&gt;</description>
  </descriptions>
</resource>
30,775
44,331
views
downloads
All versions This version
Views 30,7754,012
Downloads 44,3316,174
Data volume 30.6 TB4.8 TB
Unique views 23,6943,071
Unique downloads 22,6253,769

Share

Cite as